На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
Введите любой текст. Перевод будет выполнен технологией искусственного интеллекта.
Введите глагол на любом языке. Система выдаст таблицу спряжения глагола во всех возможных временах.
Введите любой вопрос в свободной форме на любом языке.
Можно вводить развёрнутые запросы из нескольких предложений. Например:
общая лексика
решето Эратосфена
общая лексика
алгоритм "Решето Эратосфена"
используется для поиска простых чисел
Смотрите также
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.
The earliest known reference to the sieve (Ancient Greek: κόσκινον Ἐρατοσθένους, kóskinon Eratosthénous) is in Nicomachus of Gerasa's Introduction to Arithmetic, an early 2nd cent. CE book which attributes it to Eratosthenes of Cyrene, a 3rd cent. BCE Greek mathematician, though describing the sieving by odd numbers instead of by primes.
One of a number of prime number sieves, it is one of the most efficient ways to find all of the smaller primes. It may be used to find primes in arithmetic progressions.